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The application of multigrid relaxation to transonic potential-flow calculation was 
investigated. Fully conservative potential flows around aerofoils were taken as test problems. 
The solution algorithm was based on Newton iteration. In each Newton iteration step, 
multigrid relaxation was used to calculate correction potentials. It was found that the iteration 
to the circulation has to be kept outside the multigrid algorithm. In order to obtain meaningful 
norms of residuals (to be used in termination tests of loops), difference formulas with 
asymptotic scaling were introduced. Nonlinear instability problems were solved by upwind 
differencing using mass-flux-vector splitting instead of artiticial viscosity or artificial density. 
It was also found that the multigrid method cannot efficiently update shock positions due to 
the (mainly) linear character of individual multigrid relaxation cycles. For subsonic flows, the 
algorithm is quite efficient. For transonic flows, the algorithm was found robust; it efficiency 
should be increased by improving the iteration on the shock positions; this is a highly 
nonlinear process. 

1. INTRODUCTION 

Most computer codes for the calculation of transonic potential flows are based on 
the solution of a large finite-difference equation system by some nonlinear relaxation 
algorithm. The development of these algorithms started about a decade ago with work 
of Murman and Cole, who applied upwind differencing in supersonic zones to 
generate directional bias [ 11. The most important improvements since then were the 
introduction of the concept of full discrete conservation [2], the extension to the full 
nonlinear potential-flow equation [3], and the application of results of tensor theory 
to allow nonorthogonal curvilinear grids so that grids can be easily aligned with 
complex flow boundaries [4,5]. An impression of the state of the art may be 
obtained from [6, 71. 

During the last few years, numerical analysts have proposed various new fast- 
solver algorithms that perhaps may also be used to solve finite-difference equations 
for transonic potential flow more efficiently than nonlinear relaxation algorithms. The 
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most interesting fast solvers are CR/FFT (cyclic reduction/fast Fourier transfor- 
mation), AF (approximate factorization), ILU (incomplete lower-upper decom- 
position), and MGR (multigrid relaxation). For transonic potential-flow calculations, 
fast solvers of wide applicability are of particular interest because of the complexity 
of the potential-flow equation (nonlinear, of elliptic-hyperbolic type, singular at 
shocks and sonic lines). 

The application of multigrid methods to transonic potential-flow calculations was 
investigated by several authors [8-131. Interesting results were obtained by Fuchs for 
two-dimensional transonic small-perturbation flow around nonlifting symmetrical 
aerofoils. Some combinations of the various finite-difference equation systems and 
various versions of multigrid relaxation algorithms tested by Fuchs turned out to be 
very efficient. The other authors also reported promising results. Approximate 
factorization techniques have also been applied with success [ 14-161. As a function 
of the number of grid points, approximate factorization is theoretically asymptotically 
slower than multigrid relaxation, however. As yet, ILU methods have not been 
applied to transonic problems. The application of CR/FFT to transonic flow 
problems turned out to be not quite successful. 

The present study concerns the design of a fast-solver algorithm for transonic 
potential-flow calculations using Newton iteration and multigrid relaxation. 

From preliminary investigations it was known that Newton iteration (exact or 
approximate) was promising [S, 9, 17, 181. The Newton iteration technique was also 
proposed by Hackbusch to solve other nonlinear problems than transonic problems 

1191. 
Within each Newton iteration step, a linear correction problem has to be solved. 

This is done with multigrid relaxation. Various multigrid relaxation algorithms exist 
[20,21]: for example, a nonlinear version known as the FAS (full approximation 
storage) method, and a linear version known as the cycle C method. In this study, the 
linear version was applied because the convergence analysis is considerably simpler. 

Two-dimensional full potential flow around an arbitrary given aerofoil was used as 
a test problem. The flow equations were discretized in a fully conservative manner on 
an approximately orthogonal gird of 0 type. The grid is aligned along the aerofoil. 

The nonlinear finite-difference equations are presented in Section 2, the main 
structure of the solution algorithm in Section 3, the multigrid process in Section 4, 
and the relaxation technique applied in the multigrid process in Section 6. Results of 
numerical experiments and a concluding discussion form the last two sections. Some 
stability considerations are presented in Section 5. 

2. FINITE-DIFFERENCE EQUATIONS 

The finite-difference equations to be solved are defined on a grid of 0 type. Such a 
grid may be generated by a mapping from an equidistant grid in a computational l-v 
plane to the physical x-y plane. The mapping used here consists of a sequence of a 
few simple transformations, illustrated in Fig. 1: a conformal Karman-Trefftz 
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FIGURE 1 

transformation followed by simple correction transformation. A Karman-Trefftz 
aerofoil is (crudely) fitted to the aerofoil such that the aerofoil becomes a smooth 
near-circle under the corresponding Karman-Trefftz transformation. The trailing-edge 
corner is thereby removed. The subsequent transformations map the aerofoil into a 
circle (stretching and shearing in radial direction), and introduce a stretching far from 
the aerofoil in a direction approximately normal to the streamlines, with a stretch 
factor (1 - ML)‘12. Ne ar the trailing edge, the total mapping was designed to be 
conformal to first order in (v - vu); this permits easy implementation of various 
forms of the Kutta condition. (See also Fig. 2.) 

An example of a grid is presented in Fig. 3. As shown, the grid is truncated far 
from the aerofoil (4-10 chords). 
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Because, in fast-solver algorithms, the corrections to given approximate solutions 
are in general much greater than the (usually small and smooth) corrections in 
nonlinear relaxation algorithms, fast-solver algorithms are considerably more prone 
to nonlinear instability. In the initial stages of the study it was found that various 
forms of artificial viscosity terms often gave rise to expansion shocks, particularly on 
coarser grids and also at tops of supersonic zones. A nonlinear finite-difference 
equation system with excellent stability properties was obtained by introducing direc- 
tional bias with mass-flux-vector splitting; this is a generalization to full potential 
flow of a concept applied by Engquist and Osher to stabilize the fully-conservative 
difference equations for transonic small-perturbation flow [22]. Numerical 
experiments revealed that it was also necessary to compute the density at cell-face 
centres instead of at cell corners. (Computation of the density at cell corners is the 
usual practice in most computer codes.) 

The finite-difference equation for the mass conservation equation of each cell (i, j) 
on the computational plane has the form (.’ means transposition) (see Fig. 4) 

VtjFd = 0, (1) 

where V is a second-order accurate discretization of the gradient operator 
(a/a& a/@); see below for details. We denote by Fd a discrete mass-flux vector with 
three components (hence, the term mass-flux-vector splitting): 

Fd=F-Fa+F”‘, (2) 

with F the usual mass-flux vector: 
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F=phU, 

U=GVp, 

p= (1 -+<y- l)M;(l -qy}“(y-I), 

q* = (VCJI)~G VCJ.L 

(3) 

(4) 

(5) 

(6) 

Here G is the contravariant metric tensor and h the determinant of the mapping 
(l, ‘1) + (x, y). Velocities q and desities p have been scaled by their free-stream values. 
The mass-flux vector Fa is nonzero in supersonic zones 

F”=O, if M< 1, 

= (($4 -p*q*)/ql hWT/q2) Vv, otherwise, (7) 

where M is the local Mach number, p* and q* the sonic values of the density and the 
speed, and UUT is the 2 x 2 matrix defined by the exterior product of U with itself. 
The mass-flux vector F”’ is equal to F” at the centre of the upstream cell-face. (F” 
will be computed at centres of cell faces). 

The components of the mass-flux vectors F and F” are computed at the centres of 
cell faces with second-order accurate central-difference and central-averaging 
formulas applied to rp. The Mach number test involved in the calculation of F* is also 
made at the cell-face centres; this implies that the Mach number test for F”’ is made 
at the upstream cell-face centre; it will be seen below that this has interesting conse- 
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quences for the construction of sonic and shock operators. The metric data are 
assumed to be known at the cell-face centres. 

Physical and mathematical properties of the mass-flux vectors and their discrete 
divergences are readily obtained by decomposing the matrices G and (UUT/q2) using 
the orthonormal matrix 

v= %Jq 
[ 6”yh 

and the relation G = 

VVT = unit matrix, (8) 

H-lH-lT, H the Jacobian of the mapping from the 
computational space to the physical space. In (8), (s, n) are the natural coordinates of 
the flow. In particular, F, F”, and F-F” depend on mass-flux vectors in natural 
coordinates as follows if M > 1: 

F=hH-‘V[~yls,~v,]~, 
F” = hH-‘V[prp, -p*q*, O]*, 

F-F“ = hH-‘V[p*q*,prp,]T. 

(9) 

(10) 

(11) 

These expressions show that, in supersonic zones and in natural coordinates, the 
streamline component of F - Fa has a fixed sonic magnitude; the other component is 
zero because q,, = 0. Because the scalar pq = ppS, as a function of the speed q = (os, 
has a maximum at the sonic speed q *, the vector F“ measures the mass-flux excess in 
comparison to the sonic maximum mass flux p q * *. Although F - Fa is a vector of 
fixed magnitude in natural coordinates, its divergence is generally nonzero (rp,,, is not 
identically zero); this divergence is a measure of the convergence of the streamlines. 

It may be shown that, in smooth parts of supersonic zones, the implicit artificial 
viscosity generated by the divergence of F“ -Far is closely related to that of Jameson 
[3], and to the viscosity encountered in the artificial density used by Eberle [25], 
Hafez et al. [26], and Holst [ 141. At sonic lines and at shocks, the relation between 
the vector-split concept and the artificial-viscosity and artificial-density concepts is 
lost, however. 

At sonic lines, expansion shocks cannot occur because the mass-flux vector Fd is 
forced to have a sonic magnitude: 

Fd = hH-‘V[p*q*,p(oJT, Pa # 0, Far=0 7 (12) 

at the first supersonic cell-face centre after the sonic line. Approximately normal 
shocks are allowed to become very steep, mainly because, at the first subsonic cell- 
face centre after the sonic line in the shock, the mass-flux vector Fd has the special 
value 

Fd=F+Fa’, F=phU, F”’ f 0 because M’ > 1. (13) 

It may be shown that the finite-difference equations for transonic small-perturbation 
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flow proposed by Engquist and Osher have simular properties. They showed that 
their difference formulas have stable and unique solutions [23]. The concept of mass- 
flux-vector splitting presented here is a formal generalization to the full nonlinear 
flow equation of their splitting. 

The precise definition of the discrete gradient operators V in Eqs. (l), (4), and (7) 
differs from the usual ones because asymptotic scaling is applied. This has been done 
to obtain useful norms of residuals to be used in termination tests of iteration loops. 
Because of the grid stretching and the singular behaviour of the potential near free- 
stream infinity, the residuals of sufficiently accurate approximate solutions need not 
be uniformly small over the entire grid, but are allowed to have a certain growth rate 
when tending to free-stream infinity. Efficient residual norms should account for the 
permitted growth rate. On U-type grids the permitted growth rate may be analyzed if 
finite-difference formulas with asymptotic scaling are applied. 

Asymptotic scaling naturally emerges on O-type grids if we require that the 
velocity must be approximated uniformly to O(hm)’ (h” mesh size) for any 
sufficiently smooth potential v, having the expected asymptotic behaviour when 
tending to infinity (q 1 0). This requirement leads to an analysis of the relation 
between approximation errors of difference formulas and the asymptotic behaviour 
for q 1 0 of all kinds of functions of (r, r), such as potentials, metric data, mass-flux 
vectors, and residues. 

The main steps of the analysis are the following: The mapping from the 
computational to the physical plane is defined such that 

x=r/ -I cos 27r[+ **a, 

/3y=~~‘sin2711;+..., 
(14) 

v = rl-‘W) + T&(C) + -.*, (15) 
C = CC - C)/(t, - t,) + const, (16) 

p= (1 -M&)“! (17) 

Using these formulas, it may be shown that the metric constants in expression (6) for 
q2, 

q2 = (VdTG Vrp = g”(o; + 2g”ql(pq + gz2qof, 

and the derivatives of the potential have asymptotic magnitudes given by 

g” = W), d2 = W3), g22 = W4), 

‘Pi = w-‘13 v)q = 0(r2). 

(18) 

(19) 

It follows that q may be approximated with an absolute accuracy of O(hm)*, indeed, 
if pr and pp, are approximated by difference formulas with an absolute accuracy of 
the order I-‘* and ~-~(h”)~, .respectively. 
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In general, difference formulas for derivatives f, of functions f(& q) having an 
asymptotic power series of the form 

f(T,~)=co(r)rl-4+Cl(r))1-4+‘+... 

may be derived from the identity 

(20) 

f, = w+If), - (9 + 1) r”f1 v--4-1 (21) 

by applying the usual central-difference formulas to the terms (q4+ y) and (n”f), 
because these terms are of unit order in q. The resulting difference formulas are a 
mixture of numerical and analytical differentiation in q, and have an absolute 
accuracy of order q-q-1(hm)2. 

These general considerations were used to define the discrete gradient operators V 
as follows: Indicate the usual averaging and first-order difference operators by ,D,, ,u,, 
a,, a,,, with 

P[(i.j)f = +(fi+l/*,j +.LIp.,j)7 J,,i,j,f = C.&t ll2.j -.f- 1/2,j)lhm, (22) 

then (see Fig. 5 for the stencils) 

STENCIL OF ri + ,,2 jLJ 

STENCIL OF ri j+,,z~l 

STENCIL OF c; i Fd 

FIGURE 5 
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Asymptotic scaling is also applied in the retarded mass-flux vectors F"', when retar- 
dation in the q direction has to occur 

The Neumann boundary condition on the aerofoil surface is zero mass flux 
through the aerofoil surface. This condition has been implemented in two linearly 
independent ways in the finite-difference equation system: 

(i) The mass-conservation equation (l), (23) of each cell (i, J - 1) adjacent to 
the aerofoil image is modified by requiring that no mass enters the cell through the 
cell face (i, J - i) on the aerofoil image: 

Ft(i,J- 112) = O* (27) 

(ii) The potential values ‘pi,J inside the aerofoil are coupled to the potential 
values in the flow field by applying the boundary condition at each cell-face centre 
(i, J - 4) on the aerofoil in the form 

F2(i,J- I/*) = O; (28) 

Fa and F"' are thus not used in this boundary condition, so that a second row of 
potential values inside the aerofoil is not needed. 

The Dirichlet boundary condition is applied on a large closed curve q = 7, around 
the aerofoil (in calculations, 4-10 chords from the aerofoil): 

Vi,j/* = Ri,3/* - VP) arctad/W)i.3,2, (29) 

~=xcosa,,+ysina,, 

j=-xsina,+ycosa,, 
(30) 

with a, the free-stream incidence. Because the potential values are given on the free- 
stream boundary j = 3 instead of at the grid points (i, l), one-sided second-order 
accurate difference formulas have been used at the free-stream boundary instead of 
the central formulas (24, 25). 

The circulation r is determined by the Kutta condition. Because near the trailing 
edge the grid is approximately conformal, the Kutta condition may be given the form 
(cJI~)~, = 0 if the flow is subsonic at the trailing edge. We approximate (CJI& by a 
central-difference formula. 
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3. SOLUTION ALGORITHM 

The nonlinear finite-difference equation system is solved by a fast-solver algorithm 
based on the combined use of Newton iteration and multigrid relaxation. The main 
structure of this algorithm is presented in this section. 

During the study it was found that due attention has to be paid to a few new 
problems: 

(i) Circulation changes in general give rise to an increase of norms of 
residuals. In order to prevent limit cycling or divergence of nested iteration processes 
(here, Newton iteration and multigrid relaxation), the increase must be allowed for in 
termination criteria of iteration loops. 

(ii) The solution algorithm has to iterate on different types of nonlinearity: a 
short-wavelength nonlinearity at shocks with a length scale of the order of one mesh 
of the finest grid in a current grid sequence, and a mild nonlinearity elsewhere with 
length scales of geometric properties of the aerofoil such as the chord or the leading- 
edge radius. The short-wavelength nonlinearity is encountered during shock-position 
improvements. Both types of nonlinearity have to be processed after each circulation 
improvement because circulation changes give rise to changes far from the aerofoil 
(almost linear, length-scale the chord), at the leading edge (mildly nonlinear, length 
scale 1.e. radius), and at shocks (strongly nonlinear, length scale the mesh of the 
finest grid). 

It was also found that multigrid processes do not efficiently improve shock 
positions on line grids if the shocks have to move over several (say five) meshes of 
such grids. (Such movements easily may be required by circulation updates, for 
example.) This may be explained as follows: Multigrid relaxation is based on the 
assumption that a correction to an approximate solution may be decomposed into a 
sum of short-wavelength and long-wavelength components; the short-wavelength 
components are (efficiently) computed on the finest grid of a grid sequence, and the 
long-wavelength components are computed on coarser grids where fewer grid points 
are involved in the calculations. Such a linear decomposition of a correction grid 
function in short- and long-wavelength components has sense in linear problems and 
also in linearizations of nonlinear problems. Linearizations of the shock operators, 
however, can at best estimate shock movements over one mesh of the finest grid. In 
fast-solver algorithms the shock should be able to move over several meshes, 
however. The basic assumption of linearity of the multigrid relaxation process thus 
conflicts with the nonlinearity of the shock-movement process. (This is also true for 
the nonlinar FAS-multigrid relaxation method proposed by Brandt [21], because 
Brandt’s construction of the FAS method makes use of the linearity of the correction 
problem on the finest grid.) Other details concerning multigrid relaxation and shock 
position updates are presented in Fig. 6. 

An iteration process in which these general considerations have been taken into 
account may be chosen to consist of an outer Newton iteration on the circulation r, 
and two inner iteration procedures, one for the calculation of corrections outside 
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shocks (whereby multigrid relaxation is applied), and one for the update of shock 
positions. This combination of iteration procedures may be represented by the 
following algorithm: 

initialise (D, r, ; 
until r, accurate enough do 
begin until flow equations at fixed r, are solved do 

begin improve o at fixed r, by one multigrid cycle; 
improve shock positions with partial relaxation sweeps; 

end of iteration at fixed r, 
compute error in Kutta condition; 
improve circulation estimate r, ; 

end of outer Newton iteration on r. 

The outer Newton iteration on the circulation is based on a split of the tinite- 
difference equation system of the form 

where the last equation is the Kutta condition, and the first one represents all other 
equations. The solutions o(T,) of the nonlinear system (31) alone define a (nonlinear) 
relation between r, and { &@,)/a<} te ; see Fig. 7 for an illustration. Kutta condition 
(32) means that we are interested in the value r on the horizontal axis. We may 
iterate to this value as shown in the figure. The slopes needed in this Newton iteration 
process are estimated by numerical differentiation. On a fixed grid, three to four steps 
are usually sufftcient to fix the lift coefficient to about three significant figures. 

In each step of the outer Newton iteration process to r, nonlinear equation system 
(31) has to be solved for a fixed estimate r, of the desired value of the circulation. 
This is done iteratively. In each iteration step, the solution is first improved outside 
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FIGURE 7 
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shock layers by one multigrid relaxation cycle (see Section 4), whereby shock 
positions hardly vary. This multigrid relaxation cycle is followed by an update of 
shock positions with nonlinear relaxation sweeps on the finest grid in (small) 
subdomains around shocks (partial relaxation sweeps). In the first partial relaxation 
sweep, the subdomains to be relaxed cover only shock cells. In each subsequent 
sweep, the subdomains are enlarged by one row of cells upstream, above, below, and 
downstream of the subdomain relaxed in the previous sweep. This enlargement is 
necessary because partial relaxation on fixed subdomains may lead to divergence due 
to an increase of residuals at the boundaries of the subdomain. 

The termination of the iteration to a solution of (31): L(yl(T,)} = Q for a fixed 
estimate of r, of the desired circulation is based on a test combining two criteria. 
When the circulation is not yet accurate enough, the iteration terminates as soon as 
the value of (qa},, is so accurate that it may be reliably used to improve the 
circulation to a better estimate. When the circulation is accurate enough, however, the 
iteration to a solution is terminated when a norm of the residuals of the mass conser- 
vation equations of the cells has become small enough. This test strategy drives the 
circulation as fast as possible to its final value. 

A suitable norm of the residuals was found to be the maximum norm (see (1)) 

R max = myx t(rljlVu)’ I ‘T,jFd II ‘“. (33) 

The scaling of the residuals VzjFd by qj reflects the fact that the residuals of 
sufficiently accurate approximate solutions are of order v~‘O(/Z~)~; hence, they are 
allowed to grow with v 1 0. The scaling by the mesh size h” makes the norm 
nondimensional (hence, mesh-size independent). A maximum norm is preferred over a 
rms-norm, because an rms-norm does not show that in certain stages of the iteration 
process large residuals may occur in very small regions. For example, when iterating 
at fixed r,, after each multigrid relaxation sweep the residuals of shock cells are 
usually at least an order of magnitude larger than elsewhere in the flow due to 
velocity overshoots (or undershoots) as sketched in Fig. 6. Since rms-norms (or 
average absolute-value norms) do not efficiently measure large residuals in such small 
regions, they cannot be used safely in termination tests of loops. 

In subsonic flow calculations, the partial relaxation sweeps are suppressed. 
The Newton iteration process on a grid is started with an initial approximation of 

the potential that is computed by solving the nonlinear finite-difference equation 
system (31, 32) on a coarser grid (mesh size doubled). This is repeated on a sequence 
of three to four grids. On the coarsest grid of this sequence, the entire calculation is 
started with a uniform-flow potential having no circulation. 

4. MULTIGRID RELAXATION CYCLES 

The multigrid relaxation cycles used in this study have a general structure closely 
resembling the cycle C algorithm of Brandt [21]. Its general structure is presented in 

581/48/3-Z 
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Fig. 8a. It may be seen that the cycle starts with a linearization of the flow equations 
on the finest grid so that the whole cycle effectively represents one (approximate) 
Newton iteration step. 

A few details of the implementation of this multigrid relaxation cycle are of special 
interest: 

(i) The restriction operations are applied to the complete linearized conser- 
vation equations instead of residuals. This is done in such a way that the equation 
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system on the coarser grids may be interpreted as approximations to the mass conser- 
vation equations on the finest grid. 

(ii) Certain stability properties of the linearized flow equations are transferred 
in a controlled way to the coarser grid equations. See Section 5 for more details. 

As shown in Fig. 8a, each multigrid relaxation cycle starts with a linearization of 
the nonlinear flow-equation system (31) on the finest grid around a given approx- 
imate solution 4”‘. The result is a linear first-variation equation system for a lirst- 
variation potential dylm on the finest grid, 

(pm = 4” + dpm, (34) 

Cm dylm = dR” E Qm - Lm($m}. (35) 

The long-wavelength part of the correction dq” will be computed on the coarser 
grids of the grid sequence. This requires the definition of equation systems 

C” dp” = dR”, n=m-1 1, ,***, (36) 

for these long-wavelength parts on the coarser grids by a restriction process. In order 
to obtain simple restriction rules based on the interpretation of linearized equation 
system (35) as a system of mass conservation equations and boundary conditions, the 
grids are chosen staggered so that four cells of a grid coincide with one cell of the 
nextcoarser grid; see Fig. 8b. Then the equation systems C” dp” = dR” may be 
defined recursively from the one on the finest grid. 

At each cell of a grid H”, the first-variation equation is assumed to be known and 
to have the form: 

V!‘? dFd” = dR” 1J iJ’ 

dFd” = dF” - dF”” + dF”‘“, 

(37) 

(38) 

dF” = P” V” QP, (39) 

dF”” = A * V” dq”, (40) 

-POINT !i,j) 

4 SMALL CELLS = 1 LARGE CELL 

. 2 SMALL FACES = 1 LARGE FACE 

FIGURE 8b 
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where, on the finest grid (n = m), the dRyi are residuals of 4 in (1): 

dR”. = -V?TFd” 
I ,J 1.1 * (41) 

Here dF, dF”, and dFa’ are the first variations of F, F”, and F”’ around 4 so that, on 
the finest grid, P” and Am may be shown to be the 2 x 2 matrices 

Pm = [ph{G -M2UUT/q2}]“‘, (42) 

A”‘=O, if M< 1, 

= [ph(l - M’)(UU’/q”)]“, otherwise. (43) 

Each equation 

vi,;-“T &‘d(“-1) = -,,!,f-l) (44) 

of a large cell (i, j) on a grid H”-’ (see Fig. 8b) is defined from the four 
corresponding equations (37) on grid H” by requiring that the coarse-grid equation 
should represent a mass conservation equation for the long-wavelength content dq” ’ 
of a suitable class of correction grid functions dq”. From this requirement, restriction 
rules for the residues and the coeffkient matrices are readily derived with mass-flux 
considerations. For example, the mass flux through the face (i, j + i) of the large cell 
(i, j) in Fig. 8b should b e equal to the total mass flux of the two corresponding faces 
of the small cells, giving 

(f’v dP)If.G’l/2 = f [<PV dV)Y,./+3/2 + (PV dV)l+ l.j+3/2I* (45) 

This should be true for the long-wavelength content in dyl”. For the long-wavelength 
content, the three gradients in (45) are about equal: 

P dV))c1+‘1/2 z P dY,)YJ+,,2 r P &)Y+,,j+3/2r (46) 

so that an equation for the coeffkient matrix P on the coarse grid is found: 

p~l+11~2 = tCPT.j+3/2 + pT+ l.j+3/2)' (47) 

Similar arguments are used to define the other coefficient matrices at the cell-face 
centres on the grid H”-‘. The residues are readily restricted by applying a discrete 
version of Gauss’ theorem. 

From (47) and similar formulas it follows that the coefficients at the cell-face 
centres are determined with coeffkient-weighting. Residual weighting is also applied: 
each residual dRt,-’ on the coarse grid turns out to be a weighted average of the 
residuals of the four smaller cells on the next finer grid that are covered by the 
coarse-grid cell (i, j). 

The linearized forms of Neumann boundary conditions (27), (28) are restricted to 
coarser grids in a similar way as illustrated by (45)-(47). 

When the equation system C” dcf’ = dRm for the desired correction dq” of the 
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potential has been restricted to the coarser grids, dq” is estimated. This is done by a 
recursive process involving (on each grid) improvement of dtp” by line relaxation and 
subsequent prolongation to the next finer grid by bilinear interpolation. The process 
starts on the coarsest grid by putting the initial correction potential dp’ equal to zero. 
When a dyl”-’ has been prolonged to a dtp” on the finest grid of the grid sequence, 
dq” is first added to the last potential 4” to a new 4”‘; this new potential is subse- 
quently improved by nonlinear line relaxation over the entire finest grid. This 
nonlinear relaxation on the entire finest grid terminates the multigrid cycle. 

On each grid, one line-relaxation sweep over the grid is sufficient. On the coarsest 
grid Hi, it is desirable to make more sweeps, however, to obtain a reasonable 
estimate of dcp’. Four sweeps were found a suitable number in applications. 

5. STABILITY 

From numerical experiments it was found that both the application of mass-flux- 
vector splitting as well as calculation of gradients, velocities, and densities at cell-face 
centres are necessary to obtain good stability properties. As far as stability at sonic 
lines and shocks is concerned, much insight may be obtained from (9~(13). 

It is also very helpful to analyze the structure of the coefficient matrices in the 
first-variation equation (37) of each individual nonlinear discrete mass conservation 
equation (1). A necessary condition for stability of the nonlinear finite-difference 
equation system is stability of each individual first-variation equation (37), because 
(37) is an exact linearization of (1). The last property is a consequence of the 
computation of q and p from Vyl at cell-face centres (instead of at cell corners, as 
usually is done). The stability of each first-variation equation (37) depends on the 
eigenvalues of the matrices Pm -A”’ and A “‘; see (42), (43). It may be shown that in 
subsonic flow Pm is positive definite and A” is zero while in supersonic flow, 
Pm -A” and A”’ are both precisely semi-definite, with A” having one negative eigen- 
value corresponding to the streamline direction U/q, and P” -A” having one zero 
eigenvalue also corresponding to the streamline direction U/q. This may be concluded 
from the following factorization for supersonic flow of the mass-flux vectors and 
matrices (the superscript m for the grid is omitted): 

F-Fa=hH-‘V 

F”= hH-‘V 3 

P-A=hH-‘V 
0 0 [ 1 o p VTHpLT, 

I 
VTH-IT, 

(48) 

(49) 

(50) 

(51) 
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where V is the orthonormal matrix of Eq. (8), and H is the Jacobian of the mapping 
from the computational to the physical plane, so that G = H-‘H- lT. Mass-flux- 
vector splitting leads thus to an exact separation of the positive and negative eigen- 
values of the matrix P associated with the first-variation dF = P V d9 of the mass-flux 
vector F = phU. The positive eigenvalue in the part P--A suggests central 
differencing dF - dF”; the negative eigenvalue in the part A suggests upstream 
differencing for F”’ and dFa’. 

The factorizations follow directly from the relation 

[9, OIT = VTH-?79 

(this follows from the chain rule for differentiation and from 9, = 0), so that, together 
with (4), (8), we obtain 

U/q=H-‘I’[1 01, (52) 

UUT/q2 = H-‘V (53) 

It will be seen from the results to be presented that approximately normal shocks 
are very steep. Detailed analysis of shock operators shows that this is a direct conse- 
quence of the eigenvalue of P-A corresponding to the streamline direction being 
zero, while F - Fa has a constant sonic streamline component; see (1 1), (48), and 
(52). The last property means that the central-difference part of mass-conservation 
equation (1) for cells just ahead of approximately normal shocks are independent of 
the large (ass in the shock. On fine grids, the Jameson artificial viscosity also has this 
property if the coefftcients in this viscosity are evaluated at cell centres. 

Mass-flux-vector splitting as presented here has been extensively tested numerically 
and was found useful for approximately normal shocks because the matrix UU’/q’ in 
the mass-flux vector Fa is the image in the computational plane of a unit vector along 
the streamline in the physical plane; see (52). It may be expected that steep oblique 
shocks will at least require replacement of UUT/q2 by some matrix DOT, where 0 is 
the image in the computational plane of a unit vector approximately normal to the 
oblique shock. 

The definiteness properties of the matrices Pm -A” and Am are used for the design 
of diagonally-dominant tridiagonal matrices to be applied in line relaxations; see 
Section 6 below. The definiteness properties are transferred to coarser grids by the 
simple restriction rules of form (47), so that on coarser grids these properties are 
easily traced. This is important for the convergence of relaxations on the coarser 
grids. 

6. LINE RELAXATION 

In each multigrid relaxation sweep and on each grid H” of the grid sequence, an 
approximation of the solution of first-variation equation system (36): C” drp” = dR” 
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or of nonlinear equation system (31): L”(p”(r,)) = Q’ is improved by one or a few 
line relaxation sweeps over the entire grid. Relaxation in the downstream direction is 
applied; a sweep over the lower part of the aerofoil is followed by a sweep over the 
upper part. 

Tridiagonal equation systems to be used in line relaxation sweeps may be derived 
in various ways. For example, Jameson used an analysis of a pseudo-time-dependent 
process to derive these relaxation equations [23]. The relaxation equations may also 
be derived directly from the first-variation equations, however, by considering relax- 
ation on each individual grid line as a crude Newton iteration step at that grid line. 

The derivation of the relaxation equation system of each i line starts thus with the 
assumption that, for the potential values on the i line, a correction problem has to be 
solved. We may put on the entire grid 

dC” = dqf’ - df or dC” = qo” - #“, (54) 

where d#” or 4” are given estimates of potentials and dC” is the correction to be 
computed from a relaxation equation system. Initially, this system has the same form 
as the first-variation equation (37)-(40), with the mass-flux vectors dF”, dF”“, and 
dFa’” now depending on dC” instead of on dp”: 

dF” = P” V” dC”, (55) 

dFa” = A” V” dC”, (56) 

while the right-hand side is replaced by the residual of d@” or 4” in (37) or in (1). 
This equation system is subsequently crudely approximated to a simple relaxation 
system for the calculation of values of dC,,j on line i, with a tridiagonal diagonally- 
dominant coefficient matrix. The approximation process consists of the following 
steps: 

(i) Finite-difference formulas with asymptotic scaling are replaced by the usual 
difference formulas. 

(ii) Second-order cross differences dC& are removed by zeroing the off- 
diagonal elements in the matrices P” -A” and A”. The only differences that remain 
are those of dCFl and dC& multiplied by diagonal elements of P” -A” and A” with a 
known sign (see the discussion in Section 5 about the definiteness properties of 
P” -A” and A”). 

(iii) Retarded fluxes dF”‘” representing inflow into a cell are zeroed. This 
simulates, for each cell in the supersonic zone, a zero initial condition if the 
calculation of values of dCyi on line i is considered to be an isolated subproblem. 

(iv) Corrections dC;+,J+, at points (i + a,j + /3) not yet updated in the 
current sweep are zeroed. This simulates a Dirichlet boundary condition in the 
subproblem. 

The resulting tridiagonal system is augmented by a formula for the improvement of 
the Neumann boundary condition, derived by linearizing nonlinear condition (2g), 
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and (crudely) approximated by one-sided differences at the point (i,J) in such a way 
that diagonal dominance is preserved. 

The tridiagonal equation system derived in this way from the linear first-variation 
equations turns out to be practically identical to that of Jameson 13, 5, 231 if the flow 
is subsonic or supersonic, however, without Jameson’s subsonic or supersonic relax- 
ation factors. At sonic lines and shocks, a comparison with Jameson’s formulas was 
not possible because of a lack of published results. The relaxation equation of sonic 
or shock cells turns out to be different from those elsewhere in the flow if they are 
derived from the first-variation equation. 

Relaxation factors were not used in the calculation results presented below, except 
at sonic cells where underrelaxation was applied. 

7. RESULTS OF NUMERICAL EXPERIMENTS 

From a large number of numerical experiments, a number of cases have been 
selected. This selection permits a separate analysis of the effect of circulation 
changes, grid changes, shock-position variations, etc. 

All results presented were produced by calculations made on three successive grids 
of size 34 x 10, 66 x 18, 130 x 34, which are numbered 2, 3, and 4. Each 130 x 34 
grid is similar to that of Fig. 3. Multigrid sweeps for the calculations on grid 2 used 
two grid levels, multigrid sweeps for grid 3 used three, and multigrid sweeps for grid 
4 used four grid levels. 

Figures 9a and b concern the flow around a symmetrical 12.8% thick 
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FIGURE 9b 

Karman-Trefftz aerofoil at M, = 0, CZ~ = 0 (linear problem, no circulation). Two 
conclusions follow from the convergence history. 

(i) The multigrid convergence rate is good (about 0.6 per multigrid cycle). 

(ii) The residual norm increases when a solution is prolonged to a next-finer 
grid to serve as the starting solution. This is due to a poor resolution of the coarser 
grids at the leading edge, as will be evident from Fig. 3 when 4 or 16 cells of the 
finest grid are grouped together to one cell of a coarser grid. 

Results of the incompressible flow around the same Karman-Trefftz aerofoil, at an 
incidence a, of lo’, are presented in Fig. 10a and b. It is seen that: 

(i) changes in circulation, in particular large changes, may lead to large 
increases of residual norms. This is due to large changes of the solution at the leading 
edge. 

(ii) the grids 2 and 3 are too coarse at the leading edge to permit a reasonably 
accurate calculation of the expansion of the flow at the leading edge. 

(iii) the multigrid convergence rate is good (about 0.6 per multigrid cycle). 
Results for a high-subsonic flow are presented in Fig. lla and b (NACAO012, 

M, = 0.63, a, = 2’). The addition of subsonic nonlinearity does not lead to new 
conclusions. 

The added complication of a shock in the calculation process is first considered for 
a nonlifting case with a moderate shock (NACAO012, M, = 0.8, a, = 0). Results 
are presented in Fig. 12a and b. New conclusions are the following: 

(i) After each multigrid relaxation cycle, and on all but the coarsest grid 2, the 
maximum norm of the residuals, Eq. (33), is usually found to be increased by an 
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order of magnitude. This annoying behaviour of the maximum norm is due to 
velocity overshoots or undershoots at shocks, as discussed in Section 3 and illustrated 
in Fig. 6. A typical example of a velocity overshoot is presented in Fig. 12~. (This 
figure is the result of a somewhat different algorithm not presented in this report; the 
velocity overshoot effect is representative, however.) As discussed, the velocity 
overshoot is due to a tendency of multigrid relaxation cycles to keep the shock 
position fixed. See also Jameson’s remark 111, p. 1251 about “the appearance ahead 
of the shock of a temporary overshoot,” and the corresponding flat segment in the 
convergence history in his Fig. 2b. This implies that there must be large residuals in 
small zones keeping his average-absolute-value norm temporarily about constant. 

(ii) The velocity overshoots can be reliably transformed with partial relaxation 
sweeps on the current finest grid to appropriate shock displacements; partial relax- 
ation usually reduces the residual norm considerably. 

(iii) The lack of resolution at the leading edge on the coarser grids leads to too 
small flow expansion over the leading edge and to too forward shock positions. It 
may be expected that improvement of the resolution at the leading edge on grids 2 
and 3 will lead to better pressure distributions so that a smaller calculation effort to 
improve shock positions is required (see [24]). 

A transonic case with lift is presented in Figs. 13a and b (NACAO012, M, = 0.75, 

a, = 2”). This case has also been computed in [ 7, 111. There are no important new 
points to be observed. The peak Mach number ahead of the shock is 1.37. Hence, for 
practical purposes, the shock is fairly strong. 
this is always true. 

The shock obviously covers two cells; 
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TABLE I 

(Mm, a,) Grid 
Number of 

MGR cycles 

Number of 
partial 

relaxation 
sweeps 

CP-S 
per grid 

Total 
CP-S 

(0.63,2") 2 14 0 31 
3 10 0 74 
4 8 0 219 324 

(O.&O) 2 8 14 23 
3 5 30 64 
4 10 122 680 161 

(0.75,20) 2 21 29 58 
3 23 68 231 
4 25 278 1544 1833 
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Central processor times of the research code used for the numerical experiments 
are presented in Table I. These times were measured on the NLR Cyber 73-28 
computer. The table illustrates that the algorithm is efficient for subsonic flows. For 
transonic flows, the computation times are too long. This is primarily due to the 
partial relaxation sweeps used to update shock positions. A continued search for 
improved shock-position update algorithms will be required. 

Results of computations with various forms of artificial viscosity terms instead of 
split mass-flux-vectors are omitted. We found all artificial viscosity terms tested to 
have poor stability properties at sonic lines and/or shocks (in particular on coarse 
grids), and also at the tops of supersonic zones when corrections were large. This was 
due to the fact that the viscosity terms did not deliberately exclude expansion shocks. 
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8. CONCLUSIONS 

From the results presented in this study it is evident that the introduction of 
multigrid methods in transonic potential-flow calculations is not a simple matter. A 
number of conclusions are clear from the present study, however. 

(i) Circulation changes usually give rise to an increase of residual norms 
(Section 7). 

(ii) Fast-solver algorithms are considerably more sensitive to nonlinear 
instability at shocks and sonic lines. This requires difference formulas with excellent 
stability properties. Such formulas are obtained with mass-flux-vector splitting 
(Section 2 and 5). 

(iii) It will be hard to improve shock-wave positions by multigrid relaxation 
processes because multigrid relaxation is a linear or weakly nonlinear (FAS) 
correction process, while shock-wave displacement processes are highly nonlinear 
(Section 3, Fig. 6, Sect. 7). Usually, velocity overshoots or undershoots at shocks 
have to be eliminated during the calculation process. 

(iv) In order to obtain a useful residual norm to be used in termination tests of 
loops, finite-difference formulas with asymptotic scaling have been used (Section 2, 
Eq. (33)). Compared to the usual finite-difference formulas, however, these are more 
expensive. There is a possibility that asymptotic scaling may be avoided if 
termination tests not using residual norms can be found. 

(v) The algorithm was found to be reasonably robust in numerical experiments 
(Section 7). This conclusion is supported by theoretical results concerning the 
stability of the equation system (Section 5; Section 1, Eqs. (12) and (13). 

Concluding, it can be said that for subsonic-flow calculations the algorithm was 
found to be quite efficient. For transonic-flow calculations with shocks, the algorithm 
was found to be reliable. More efficient procedures for the update of shock-positions 
are required however; these should be at least as robust (convergence guaranteed) as 
the preliminary procedure (partial relaxation near shocks) investigated in this study. 
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